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A connection which is both Einstein and semisymmetric is called an ES connec- 
tion, And a generalized n-dimensional Riemannian manifold on which the differ- 
ential geometric structure is imposed by g~. through an ES connection, is called 
an n-dimensional ES manifold and denoted by ESX.. This paper is the third part 
of a systematic study of the submanifolds X,~ of ESX,,. In the first part, we 
introduced a new concept of the C-nonholonomic frame of reference in ESX, at 
points of X,~ and dealt with its consequences. In the second part, the generalized 
fundamental equations on a hypersubmanifold of ESX, were derived as an appli- 
cation of the C-nonholonomic frame of reference. The purpose of the present 
paper is to study parallelism in ESX~ and in its submanifold X,., using the C- 
nonholonomic frame of reference and the new concept of E& curves. 

1. INTRODUCTION 

Einstein (1950, Appendix II) proposed a unified field theory that, while 
physically motivated, is mainly geometrical, in that it mainly consists of a 
set of geometrical postulates for the space-time X4. He did not extensively 
develop the geometrical consequences of these postulates. Characterizing 
Einstein's four-dimensional unified field theory as a set of geometrical postu- 
lates for X4, Hlavat~ (1957) provided its mathematical foundation. Since 
then the geometrical consequences of these postulates have been further 
developed. A number of mathematicians and theoretical physicists have 
contributed to the development of this theory. The generalization of this 
theory to the n-dimensional generalized Riemannian manifold Xn has also 
been attempted by, e.g., Wrede (1958), Mishra (1962), and Chung et al. 
(1981a,b, 1985). However, the main problem for the n-dimensional case is 
that it is unable to display a surveyable tensorial solution of the Einstein 
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equation in terms of gx,, probably due to the complexity of the higher 
dimensions. 

Recently, Chung et al. (1987) introduced the concept of an n-dimen- 
sional ES manifold ESX,,  imposing the semisymmetric condition on Xn, 
and found a unique representation of the Einstein connection in a beautiful 
and surveyable form. Later, Chung et al. (1988a,b) also investigated the 
curvature theory and field equations in ESXn. 

This paper is the third part of a systematic study of the submanifolds 
Xm of ESXn. In the first part (Chung et al., 1989a), a new concept of the C- 
nonholonomic frame of reference in ESX, at points of Xm was introduced 
and its consequences were considered. In the second part, Chung et al. 
(1989b) derived the generalized fundamental equations on an ES hypersub- 
manifold as an application of the C-nonholonomic frame of reference. The 
purpose of the present paper is to study parallelism in ESX, and its submani- 
fold X,,. This paper contains five sections. Section 2 introduces some prelimi- 
nary notations, concepts, and results. Section 3 deals with parallelism in a 
general Xn. Most results in this section are well known. Section 4 is devoted 
exclusively to parallelism in ESX,,  investigating properties of the tensor 
U~,, the vectors S~ and U~, and the ESi curves. In the last section we discuss 
parallelism on the submanifold Xm of Xn, and then of ESX~, using the C- 
nonholonomic frame of reference and the new concept of E& curves. 

All considerations in the present paper are for a general n > 1 and for 
all possible classes and indices of inertia. 

2. PRELIMINARIES 

This section is a brief collection of basic concepts, results, and notations 
needed in the present paper. It is based on the results and notation of Hlavat~ 
(1957) for Section 2.1, Chung et al. (1987) for Section 2.2 and Chung et al. 
(1989a) for Section 2.3. 

2.1. n-Dimensional Unified Field Theory on X. 

Let Xn be a generalized n-dimensional Riemannian manifold referred 
to a real coordinate system yV, with coordinate transformation yV -~ fv,3 for 
which 

Det r 0 (2.1) 

The n-dimensional unified field theory on X, is an n-dimensional generaliz- 
ation of Einstein's unified field theory on the space-time X4. Therefore, 

3Throughout the present paper, lowercase Greek indices are used for the holonomic components  
of  tensors in X,,. They take the values 1", 2,  . . . .  n" and follow the summat ion convention. 
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in this theory the algebraic s tructure  on 22, is imposed by a general real 
nonsymmetric tensor gz,, the so-called Einstein unif ied f i e l d  tensor. It may 
be decomposed into a symmetric part hz, and a skew-symmetric part kz~ : 

g~  = h~ + k~,, (2.2) 

where 

g = Det(gzu) ~0, [? = Det(h,~) ~0  (2.3) 

Hence, we may define a unique tensor h *v by 

h ~ z ~ _ ~  (2.4) 

The tensors h z~ and h~ u will serve for raising and/or lowering indices of 
holonomic components of tensors in X, in our further considerations. 

The manifold X ,  is assumed to be connected by a real general 
connection F ~, with the following transformation rule: 

f-" ~ - ~ f f  { c3yfl ~3Yr c32 " \ 

Furthermore, in the n-dimensional unified field theory, the di f ferential  geo-  
metr ic  s t ruc ture  is imposed on X. by the tensor gz~ by means of the Einstein 
connect ion F~u satisfying a system of Einstein's equations 

g t  - -  

Oo,g~ u - F zo,g~ - F ~o~g~ - 0 (2.6a) 

This system is shown to be equivalent to the tensorial form 

Do,gx~ = 2So,~"ga~ (2.6b) 
V _ _  v where Sz~ - F  [*~1 is the torsion tensor of F ~  and Do, denotes the symbol of 

the eovariant derivative with respect to F ~ .  
A procedure similar to Christoffel elimination applied to the symmetric 

part of (2.6b) yields that if the system (2.6) admits a solution F~,, it must 
be of the form 

where 

+ s j +  (2.7) 

U~z~ = 2h~"S.(/~km~ (2.8) 

and {z~} are the Christoffel symbols defined by hz u. 
An eigenvector V v of kz~ which satisfies 

( M h ~ u + k z ~ ) V " = O  ( M  is a scalar) (2.9) 

is called a basic vector of X,, and the corresponding eigenvalue M of kzu a 
basic scalar of X , .  
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2.2. The ES Manifold ESX. 

S v A connection F [ ,  is said to be semisymmetric if its torsion tensor ~u 
is of  the form 

S~S = 26[fiX.] (2.10) 

for an arbitrary vector X, .  A semisymmetric connection which satisfies (2.6) 
is called an E S  connection. A generalized Riemannian manifold Xn on which 
the differential geometric structure is imposed by gz,  through an E S  connec- 
tion is called an n-dimensional E S  manifoM and will be denoted by ESXn.  

It has been shown that there always exists a unique n-dimensional E S  
connection F ~ of  the form 

F~u = {flu} + 2 k j X u )  + 2atffX~l (2.11) 

for a unique vector X u represented by 4 

1 
Xz  = - -  *h ~ V~k~x (2.12) 

n - 1  

where V~ is the symbolic vector of  the covariant derivative with respect to 
{flu}. Therefore, we note that there always exists one and only one E S X ,  
once a unified field tensor gz~ is given. 

2.3. The C-Nonholonomic Frame of Reference 

Let Xm be a submanifold of  a generalized n-dimensional Riemannian 
manifold X, (m < n), defined by a system of  real parametric equations 

yV=yV(xl . . . .  , X m) (2.13) 

It is assumed that the functions yV(xi) are sufficiently differentiable and the 
rank of the matrix of derivatives By=  OyV/~x ~ is m. Clearly Xm is an m- 
dimensional differentiable manifold in its own right. Furthermore, if a vector 
field tangential to Xm is given by U ~ in the y's and U i in the x's, respectively, 
we must have 

v v i U = Bi U (2.14) 

Since the rank of  the matrix (By) is m, the condition (2.3) guarantees 
the existence of  thef irs t  set of n - m  nonnull real vectors N v normal to X,,,, 

x 

4The precise representation of the tensor *h z" is given in Chung et al. (1981a). 
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which are linearly independent  and mutual ly  or thogonal .  Tha t  is, 

ha~B*/NP=O, h~t~C~NP = 0 for  x # y  (2. t5a)  

The process o f  determining this set is not  unique unless m = n -  1. However,  
we may  choose  their magni tudes  such that  

h ~ N ~ N  t~= e~ (2.15b) 

where e x = + l  accordingly as the l e • h a n d  side o f  (2.15b) is positive or  
negative. 

Put  

IBm ' if A = I  . . . . .  m ( = i )  (2.16) 
E']=~NV- if A = m + l  . . . . .  n ( = x )  

Since {E,]} is a set o f  n linearly independent  vectors in X,  at points o f  Xm, 
there exists a unique second set {E~} of  n linearly independent  vectors at 
points  o f  Xm such that  5 

A v _ _  v A a EzEA - 6~, E ~ E B -  6~ (2.17) 

Put  

E2  i if A = l , . . . , m  (---- i) (2.18) 
(N~  if A = m + l  . . . . .  n ( = x )  

V i V B;~- B~Bi (2.19) 

Then, it has been shown that  the following relations hold in virtue o f  (2.17): 

x x 
i a _ _  i a x i a BaBj - 3j, N~N = fly, B~N = N~,Bi~ = 0 (2.20) 

Y 

x x 

B ~ = ~ - Z  N x N  v, B~N~=B~Na=O (2.21) 
x 

In virtue o f  (2.21), we note  that  the vectors B~ fo rm the second set of  
linearly independent  vectors tangential to Xm. We also note that  the set 

5In the present pape L we use the following different types of indices: (a) Lowercase Greek 
indices a,/3, 7, . . . .  running from 1" to n' are used for the holonomic components of tensors 
ofX,. (b) Capital Latin indices A, B, C . . . . .  running from 1 to n are used for the C-nonholon- 
omic components of tensors in X,, at points of X,,. (c) Lowercase Latin indices i,j, k . . . . .  
with the exception of x, y, z, running from 1 to m (<n). (d) Lowercase indices x, y, z, running 
from m + 1 to n. The summation convention is operative with respect to each set of the above 
indices within their range, with the exception of x, y, z. 
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X 

{N~} is the second set of  n - m  nonnull vectors normal to X,,, which are 
linearly independent and mutually orthogonal. 

The sets E ]  and E~ will be referred to as a C-nonholonomicframe o f  
reference in X ,  at points of  Xm. This frame of  reference gives rise to C- 
nonholonomic components of  a tensor in X ,  : If  TYtZ are holonomic compo- 
nents of  a tensor in X, ,  then at points of  Xm its C-nonholonomic components 

~... Ts... are defined by 

a . . . . . . .  A E~ (2.22) TB... = Ta..Ea �9 . . . . .  

In virtue of  (2.17), an easy inspection shows that 

TXZ A v . . .  E 8 (2.23) = T s ~ E A  z " " �9 

As a consequence of  (2.23), we have 

X X 
_ i j h ~  - huB ~B ,, + ~ exN ~N u (2.24a) 

X 

h ~ =  f f J B } B f +  y, exNZN ~ (2.24b) 
X X 

X 

As another consequence of  (2.23), we have 

T ~= T i B y + y ,  TXN ~ (2.25a) 
X 

or equivalently 

x 

Tz = TiB~ + Y, TxNz  (2.25b) 
x 

where T v are components in the y's of  a vector in X,.  Equations (2.25a) 
and (2.25b) show that a t  each point of  X,, any vector T v in Xn may be 
expressed as the sum of  two vectors, the former tangential to Xm, the latter 
normal to Xm. Furthermore,  T i, called the induced vector on Xm o f  T ~ in X , ,  
are components of  a tangent vector to Xm at points of  Arm relative to the 
coordinate transformations x; ~ ~". This concept may be generalized to an 
arbitrary tensor TXZ in X ,  in like manner. If  T ~  are the components in the 
y's of  a tensor in An, then the quantities 

; . . . . . . . .  i . "B~" (2.26) 7 3 . . . -  T e . . . B o  �9 . .  

evaluated at points of  X,, are called the components o f  the induced tensor on 
T V . . ,  Xm of  Z... in X=. In fact, they are components of  a tensor in Arm relative to 

the coordinate transformations x j ~ ~i. 
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It has been shown that the induced tensors h;j of h~, and h ik of h zv satisfy 

h,jh ik = S~ (2.27) 

Therefore, they may be used for raising and/or  lowering indices of the 
induced tensors on Xm in the usual manner. 

2.4. The Induced Connection o n  X m of X. 

If  F ~  is a connection on X.,  the connection F~ defined by 

F ~ ( B o + F  k r -- (2.28) 
~a'-'~ "-'J ), ~x j r i c~xj 

is called the induced connection of F ~u on Xm of X,.  
Each of the following statements has been already proved: 
(a) The torsion tensor So .k of the induced connection F~ is the induced 

tensor of the torsion tensor Sx S of the connection F ~ .  That is, 

S i f = e  7 o ~ k  (2.29) o a f l  L* i J J j  . o  7 

(b) The induced connection {[-} of {z~} is the Christoffel symbol 
defined by hij. That is, 

{?j} = �89 ~hjp + ejhip - -  O, hu ) 

(c) On an Xm of E S X . ,  the induced connection F ~- is of the form 

r ~  = {?j} + 26ukXjl + 2k([Xj) (2.31) 

Hence, the induced connection is also semisymmetric. 
(d) A necessary and sufficient condition for the induced connection 

F ~. to be Einstein is 6 

x 

kxiif~j]k = 0 (2.32) 
x 

3. P A R A L L E L I S M  IN X. 

In this section we investigate parallelism and paths in Xn. Some of the 
results introduced in the present section are well known. 

In a general X, there is no basis for the comparison of vectors at different 
points. For a Riemannian manifold, parallelism of vectors, as defined by 
Levi-Civita, serves as a basis for such comparison. This definition may be 

6This condition has been proved in Theorem 3.17 of Chung and Kirn (1991). 
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generalized for a connected generalized Riemannian manifold An. Let C be 
any curve in X.,  given by 

y~=yV(t) (3.1) 

Definition 3.1. A vector field V ~ is said to be parallel along C with 
respect to a connection F Yt. if it satisfies the following condition" 

dY~ VtzDaV~1=O, V~r  D~V ~ (3.2a) 
dt 

for some p ~ O, or equivalently 

\dr dt J 
V~r D,~V ~ (3.2b) 

In particular the curves whose tangents are parallel along themselves are 
called the paths in Xn with respect to F ~ .  A path with respect to {z~} is 
called a geodesic of X.. 

Therefore, the equations of paths are given by 

2~ o~_t ~) dy tx {d y , .~] dy =0, A ~p = r ~'~,~) (3.3) 

Theorem 3.2. A necessary and sufficient condition that parallelism be 
the same along every curve in X. with respect to two connections FY w and 
F ~ is that they are related by 

or equivalently 

F,~u = F~u+ 2~5,~p~ (3.4) 

A Y~ = A,~ + 2&Vp~) (3.5a) 
S~.V= Sxu~+ 2ata~p~l (3.5b) 

where pz is an arbitrary vector. 

Proof. If  parallelism is the same along every curve in Xn with respect 
to F Y~u and - ~ Fz . ,  we must have (3.2b) and the corresponding one for F~.. 
Subtraction of the former from the latter gives 

d a d a VE~A~a~IV~aY-~ = firE~A/~vlvrv p Y =0 (3.6) 
at dt 
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where 

v - - V  =r o-r;o (3.7) 
is a tensor. In order that (3.6) holds for every curve and vector V v in X,,  
we must have 

~(~t~A~Vl = 0 (3.8) 

Contracting for .~. and 7 in (3.8), it follows that 

A ~ j =  2 ~ p  ~ (3.9) 

where pa is a vector defined by 

1 
p~= ~n Ar~ 7 (3.10) 

The relation (3.4) immediately follows from (3.7) and (3.9). On the other 
hand, it may be easily seen that the corresponding condition to (3.2b) for 
F ~  follows from (3.4) and (3.2b). This proves the converse statement of 
our assertion. The relations (3.5) are an immediate decomposition of (3.4). 

Remark 3.3. In virtue of (3.4), we note that parallelism along every 
curve in X, cannot be the same for two different symmetric connections. 
Furthermore, equation (3.3) suggests that paths in Xn are the same with 
respect to two connections, one of which is F ~u and the other -~ ' F 4, as defined 
by (3.5a) and an arbitrary choice of Sz~. 

The following theorem gives a condition of parallelism in terms of the 
covariant components of vectors. 

Theorem 3.4. The condition (3.2a) of parallelism is equivalent to 

dY~(D~V[:o)V.] dY~ ro~.~ (3.11) 
.-t- :52 

where 

Tko..la = V:(D~h~Lo~) V.I (3.12) 

Proof Multiplying by h~,hv~o on both sides of (3.2a), we have 

dx a 
- -  V[uh,olt~aV~=O (3.13) 
dt 

Our assertion (3.11) immediately follows by substituting the obvious relation 

h~,~V: = D~Go- V:D~h~o, 

into (3.13) and making use of (3.12). 
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4. PARALLELISM IN ESX. 

Agreement 4.1. In this section and in what follows, we suppose that the 
unique vector Xz given by (2.12) satisfies the following conditions: 

(a) X~r 
(b) X~ is not a gradiant vector. 
Section 4.1 is concerned with some useful relations satisfied by the 

tensor U ~  and the vectors 

& = S J ,  Ux= U ~  (4.1) 

which are needed in our further considerations. Section 4.2 is devoted to the 
parallelism, paths, and parallelism-preserving change of connections 
in ESX,.  

4.1. The Tensor UV~ and the Vectors S~, U2 

The tensor U ~  is closely related with the theory of parallelism. 

Theorem 4.2. In ESX~ the tensor U~z~ satisfies the following conditions: 
(a) U ~  ~ 0. 
(b) U~v~.)=O. 

Proof. The condition (b) is a direct consequence of 

U~zu = 2 k j X , )  (4.2) 

which follows from (2.8) and (2.10). In order to prove statement (a), assume 
that U~z, = 0. Then (4.2) gives 

kz~X~+ku~X~=O for every X, p, v (4.3) 

In virtue of the first condition of Agreement 4.1, there exists at least one 
fixed index ~ such that Xe ~ 0. Hence, we have 

ka~Xe+ke~X~=O for every ,~ and v (4.4) 

Putting ,~ = ~ in (4.4), we first note that k~v = 0 for every v. Hence, substitut- 
ing kr into (4.4), we finally have 

kz~ = 0 for every ~, and v 

which is a contradiction to the nonsymmetry of ga~. 

Remark 4.3. Substituting (2.8) into the left-hand side of condition (b) 
of Theorem 4.2, we note that (b) also holds in An. 
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Theorem 4.4. In ESX~ the vectors Sz and U~ are given by 

Sz=(1 - n ) X z  

U~ = �89 0z In g = k ~ X ~ ,  

P r o o f  Putting p =  v 2n (2.10), we have 

1391 

(4.5) 

g =  g/[~ (4.6) 

(4.5). Similarly, the second 
relation of (4.6) may be obtained by putting p = v in (,4.2). According to 
(2.3), we note that there exists a unique tensor 

, g Z V  ~ In g (4.7a) 
8gzv 

satisfying the condition 

gzu *gXV= g~z ,gVX= 8~ (4.7b) 

In order to prove the first relation of (4.6), multiply by ,gZU on both sides 
of (2.6a) and make use of (4.7b) to derive 

6 t  a _ _  Go In g - F ~,o - F o~- 0 (4.8a) 

o r  

~o~ In g + 2So,- 2F ~ =  0 

On the other hand, in virtue of the well-known classical relation 
a 1 

we have 

(4.8b) 

Theorem 4.6. 

to Sz). That is, 

U~X ~ = U~S ~ = 0 (4.9) 

P r o o f  In virtue of the second relation of (4.6) and the skew-symmetry 
of kx;, the first relation of (4.9) may be proved in the following way: 

U~X ~ = k ~  X zP( ~ = k~pX~X ~ = 0 

Therefore, the second relation of (4.9) is obvious in virtue of (4.5). 

a - -  1 

F o ~ -  ~Goln b+  S~+U~ (4.8c) 

The first relation of (4.6) immediately follows from (4.8b) and (4.8c). 

R e m a r k  4.5. In the proof of the first relation of (4.6), we used the 
Einstein condition (2.6) only. Therefore, we note that it also holds in An. 

In ESXn the vector field Uz is orthogonal to Xz (or 
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Theorem 4. 7. In ESX,  we have 

D~Xp = VzXu - 2 U(zX~) 

D[zX~] = V[~X~] = 8[~X~I 

VIsUal=O, DtzU~j=2UE~Xul 

Proof  
and (4.6). 

(4.10a) 

(4.10b) 

(4.10c) 

The proof  of this theorem follows easily from (2.10), (2.11), 

4.2. Parallelism in ESX,  

In virtue of  (3.3) and (4.2), a curve C in ESX, ,  given by (3.1), is a path 

at each point of  C is called 

t 
an ESI curve 
an ES2 curve 
an ES3 curve 
an ES4 curve 

of  ESX, .  
Since the vectors Xa and Ua are orthogonal in virtue of (4.9), we note 

that an ES3 curve is an ES2 curve, while an ES2 curve may not be ES3. 

if it satisfies 

dy[Z (d2yV]+ dy~ dyP . . vl" dy~ dye~_~7 
dt \ dt 2 {~} ~ - ~ - •  ~ - ~ - ) - u  A (4.11) 

As a consequence of  (4.11), we have the following result. 

Theorem 4.8. A necessary and sufficient condition for a path C in ESX,  
to be a geodesic is that the tangential vector field T ~ = dy~/dt o f  C satisfies 
the following condition: 

(Xa7 ~) (k~ t~ T ~] T ~) = 0 (4.12) 

In order to obtain some geometrical consequences of the condition 
(4.12), we need the following definition. 

Definition 4.9. A curve C in ESX,  which is 

f 
tangent to a basic vector of ESX,  
orthogonal to the vector X~ 
tangent to the vector Uz 
tangent to the vector X~ 
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According to the Definition 4.9, the characterization of an JESs curve is given 
by 

(2.9) 

C is an ES1 curve~ )k~t*TV1T~=O along C (4.13a) 

C is an ES2 curve ~ X~T ~= 0 along C (4.13b) 

C is an ES3 curve a T~=pU~ a l o n g C  f o r a s u i t a b l e p # 0  (4.13c) 

C is an ES4 curve ~ T~=pX~ along C for a suitable p:~0 (4.13d) 

Now, we are ready to state and prove consequences of the con- 
dition (4.12). 

Theorem 4.10. Let C be a path in ESXn. Then the following statements 
hold: 

(a) If  C is a geodesic, it is an ES1 o r  ES2 curve. 
(b) If  C is an ESi curve, i=  1, 2, 3, then it is at the same time a geodesic. 
(c) If  C is a minimal ES4 curve, it is a minimal geodesic. 

Proof Our assertions in this theorem are immediate consequences of 
(4.13) and Theorem 4.8. 

Since there exists a unique ES connection in X,,  it: is not possible to 
consider a change of  ES connections which preserves parallelism. However, 
the following theorem gives the most general parallelism-preserving change 
of connections one of  which is the ES connection. 

Theorem 4.11. A necessary and sufficient condition that parallelism be 
the same along every curve in X, with respect to two connections one of 
which is the ES connection F ~u is that the other connection F,~u be given by 

~v  f v )  zu- ~z ~,s - 2g~(~x~,) + 23~A~ (4.14) 

which may be split into 

- -  v U v 

= { ~ }  - 2g~(~Xm + 25(ffA,) (4.15a) 

Sx~ ~= 28[~oVAul (4.15b) 

where 

Ax =Xz +pz (4.16) 

is an arbitrary vector. 

Proof Suppose that parallelism is the same along every curve with 
respect to two connections one of  which is the ES connection F~u. 
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Substituting (2.11) into (3.4) and making use of (4.16) and 

g~z = &v_ kzV 

we have (4.14). Conversely, suppose that (3.2b) holds for the ES connection 
F~ u. Then, in virtue of (3.2b), (4.14), and (4.16), it follows that 

VEz(dV~+ ~ , ~ v ,  dY"I= 'Yd '~ 
\ dt r d t /  2VEX3P~IVPdtPr 

This proves the converse statement of our assertion. 
As an immediate consequence of Theorem 4.11, we have the following 

theorem simply by putting A, = 0 in (4.14) and (4.15). 

Theorem 4.12. Parallelism is preserved along every curve in X, with 
respect to the ES connection F [, and a symmetric connection 1 ~ ~,v given by 

F Y~u = {z~v} - 2g~(zXu) (4.17) 

Our final result is the following theorem, which gives a precise tensorial 
form of the tensor T, ou~ in ESX, .  

Theorem 4.13. In ESX,  the tensor T, ouz defined by (3.12) is given by 

T,o,~ = ( V~ - k~ t3 V,)Xto, Vul + (V•X,) Vt, g,ol~ (4.18) 

Proof In virtue of (2.6b), (2.10), and (2.2), we have 

V~Dah~,o = 2 VaS~(o, rgl3)7 

= 2 V'(6~rX(o~g~)r- X~6(oTgtJ) r) 

= 2 V'(X(o,g~)~ - X~g(,o,)) 

=Xo, V~-  (ka'Va)X,o- 2X~Vo,+ Vt3X, g,o~ (4.19) 

Substitution of (4.19) into (3.12) immediately gives (4.18). 

5. PARALLELISM IN A SUBMANIFOLD OF ESX. 

In this final section we investigate parallelism, paths, geodesics, and 
ESi curves in a submanifold of ESXn, using the C-nonholonomic frame of 
reference, and obtain several interesting properties concerning parallelism. 
In Section 5.1 we discuss parallelism in a general X,, and then apply the 
results to a submanifold of ESX,  in Section 5.2. In this section, we particu- 
larly investigate the properties of ESi curves. 
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5.1. Parallelism in a Submanifold of X. 

All discussions in the present section are restricted to a submanifold Xm 
of a general X~. 

Let C be a curve in Xm, given by 

yV=yV(s) in the y's (5.1a) 

xi=xi(s) in the x's (5.1b) 

Let V v be the components in the y's of  a vector field in Xm defined along 
C. Then, in virtue of (2.14) and (2.26), its induced components V i on Xm 
are related to V ~ as 

Va= VkB~, Vi = a i V B a (5.2) 

Along C introduce two vector fields A v and C i by 

A~=dYaDaV~, c = d X ' D . V  i (5.3) 
ds ds : 

respectively, where Dj denotes the symbol of the covariant derivative with 
respect to the induced connection F~ defined by (2.28). 

Theorem 5.1. The vector C s is the induced vector on X,, of the vector 
A v in X,.  That  is, 

C i= A i= AaB~ (5.4a) 

The inverse relation of (5.4a) is given by 

a v= AiBy+ Y" AXN ~ (5.4b) 
X 

Proof Using the first relation of (5.2) and (2.28), we have 

/OVa a ~ ~ 
(V~Va)BSBf =~~xj + F rl3V Bj )Ba 

[ c~vk a F~B~Bf)]B~ + 

-c3Vi: t- VkFikj= DjV i (5.5) 

We now substitute (5.5) into the second relation of (5.3) to prove (5.4a) in 
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the following way 

p dx]  i 
C~=(DpV )(BJ -~s )B~ 

=(D~V a) dy 8 i _  ~ i i 
~s  B a - A  B,~=A 

The relation (5.4b) directly follows from (2.32a). 
In virtue of (5.4), it should be noted that A ~ is not tangential to Xm in 

general, whereas V ~ is tangential to Xm. 

Definition 5.2. The vector field A ~ (or A ~) is called the generalized 
derived vector of V ~ (or V i) in the direction of C with respect to )2, or FXu 
(or Xm or Ft. ). In particular, when V v (or V ~) is the unit tangent vector field 
to C, we call 

ayd ~D dY~ (or A i=dxJo'dx'~ 
A~=ds U ds \ ds l ds ] 

(5.6) 

the generalized first curvature vector of C with respect to X,  (or Xm). 

Theorem 5.3. The bivectors V[ZA vt and V{iA jl are related by 

V[iA jl = V[~AtqB~B~ (5.7a) 

V[ZA vl = V[iAJlBZiBf + ~x Axv[;~NVl (5.7b) 

Proof The relation (5.7a) is a direct consequence of (2.33). On the 
other hand, (2.32a) gives 

V[XA~1 = V[iAJlB~Bf + ~ V[XAqNZBY 
x 

+ ~  V[iA~IB~N~+ ~ V[~AylNXN~ 
x y 

X X , y  

Since the vector V ~ is tangential to Xm, the last n - m  C-nonholonomic 
components V x of V V vanish. Substituting VX=0 into the above relation 
and making use of (5.2), we finally have (5.7b). 

In the following two theorems, we give geometrical interpretations of 
the relations (5.7). 

Theorem 5.4. Let C be a curve in a submanifold Xm of X, and let V ~ 
be a vector field in Xm defined along C. Then the following statements hold: 

(a) If V v is parallel along C with respect to X~, then it is also parallel 
along C with respect to Xm. 
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(b) I f  V v is parallel along C with respect to Xm, then it is also parallel 
along C with respect to Xn or its generalized derived vector A v in the direction 
of C is normal to Xm along C. 

Proof In virtue of (3.2a), (5.3), and (5.4a), we first note that VtZA vl = 
0 (Vf/AJI=0) if and only if V v is parallel along C with respect to X~ (Xm). 
Hence the statement (a) follows directly from (5.7a). Conversely, suppose 
that V ~ is parallel along C with respect to Xm. Then VVA jl =0  in (5.7b). I f  
the vector A ~ is tangential to X,, along C, then A x = 0 for all x and so VI~A ~l = 
0 in virtue of  (5.7b). Hence V v is parallel along C with respect to X~ in this 
case. I f  the vector A ~ is not tangential to Xm along C, then Ax #O for some x 
and hence (5.7b) gives 7 

( A I-2 N 1AX) = 0 --, AXN 
x x 

This shows that the vector A v is normal to X~ in this case. Hence the 
statement (b) is proved. 

Theorem 5.5. Let C be a curve in a submanifold Xm of  X, .  Then the 
following statements hold: 

(a) If  C is a path in X , ,  then it is also a path in Xm. 
(b) If  C is a path in Arm, then it is also a path in X ,  or its generalized 

first curvature vector with respect to X, is normal to X,~l along C. 

Proof Taking the vector field V ~ in Theorem 5.4 as the unit tangent 
vector field to C, that is, 

v v (5.8) 
ds ' ds 

our assertion immediately follows from Theorem 5.4. 

5.2. ESi Curves and Parallelism in a Submanifold of ESX. 

Now we are ready to obtain several interesting properties of ESi curves 
concerning parallelism in a submanifold Xm of ESXn, in addition to the 
results of  Section 5.1, which also hold in an Xm of  ESXn. 

As given in (2.31), the induced connection F~ of the ES connection is 
also semisymmetric, but it is not Einstein in general. Therefore, we note that 

7Another possible case for the left-hand side to hold is that the relation V V = A " - ~  A ' N  v 
v 

holds. In virtue of  (5.4b), this relation leads to 

(5~2) 

V V = A , B )  �9 .-------, V i = A  ~ 

which is a contradiction to the Definition 3.1 o f  parallelism. 
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a submanifold  Xm of  ESXn is not  an ES manifold in general. It is an ES 
manifold  if and only if the unified field tensor g~u on ESXn satisfies the 
condi t ion (2.32). 

In  order  to investigate the properties o f  E& curves on an Xm of  
ESXn, we need the following definition similar to the Definition 4.9 or  the 
criterion (4.13) : 

Definition 5.6. A curve C on an Xm of  ESX ,  is called 

t 
an ESl curve 
an ES2 curve 
an ES3 curve 
an ES4 curve 

with respect to Xm, if a long C the induced vector T" o f  T v satisfies the 
condi t ion 

t 
ki[JT k]T ~ = 0 

Xi Ti = 0 

Te=pU,, p~O 

T~=pX~, p~O 

The following theorems give some special properties o f  E& curves 
on Xm. 

Theorem 5. 7. Let C be a curve on an Xm of  ESXn. Then the following 
statements hold:  

(a) I f  C is an E& curve with respect to X , ,  it is also an ESi curve with 
respect to Am. Here, i =  1, 2, 3, 4. 

(b) I f  C is an E& curve with respect to Xm, it is also an ES1 curve with 
respect to Xn if the following condit ion is satisfied: 

~x l. x qr, hqr, i Ar[2t D v] - -  '~i - - 7.- "-'/, - 0 (5.9) 

(c) I f  C is an ES2 curve with respect to Xm, it is also a n  ES2 curve with 
respect to AT,,. 

(d) I f  C is an ES3 curve with respect to X .... it is also an ES3 curve with 
respect to X,  or its tangent Tx along C is given by 

(5.10) 
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(e) If C is an ES4 curve with respect to Xm, it is also an ES4 curve with 
respect to X, or its tangent Tz along C is given by 

Tx=p z -  XxNz (5.11) 

Proof. Since the curve C is on Xm, we first note that 

x 

T'~Na=O (5.12) 

Making use of (2.19), (2.21), (2.26), and (5.12), we have 

ki~JTk]T~=k/flTrT'B~Bkrl(5~- 2x ~Na?r "\.) 

= k~[C'T rl T~BSB k r (5.13a) 

X i T  i =-. X a Z ~ n ~  

= XaT~( 5~- ~x N'~V~)=X,T'~ (5.13b) 

Tz=pUz for some p ~ 0  

--, (Ti-pU~)B~=O for some p # 0  

--* Ti=pU~ for some p C 0  (5.13c) 

(since Uz is tangential to Xm in this case); and 

T~ = pXz for some p ~ 0 

--, (Ti-pX~)B~x=O for some p # 0  

Ti=pXe for some pC0  (5.13d) 

(since Xz is tangential to X,,, in this case). 
Our statements (a) and (c) immediately follow from (5.13) and Defini- 

tion 5.6. In order to prove the converse statement (b), we use (2.23) to 
obtain 

I ~  A D A D B  

k #X = r~ B ~" A~o ,6 

. . ~  . . . x x 

=k/BjB~+~ ki"NZBS+~ k~'BZ~N,+ ~ k.,YN~N~ (5.14) 
. " . - " x , y  - 
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Making use of  (2.20), (2.26), (5.12), and (5.14), it follows that 

k~t;tT~1T~=k/ThTkB~ZB~]B't~B~ + ~ kiXThT~Nt;~B~]Bi/~B~ 

= ki[JT hl T'B:BZ + ~ kiXThTiN[~B~ ] (5.15) 

Our statement (b) immediately follows from the relation (5.15) in virtue of  
(4.13a) and Definition 5.6. In order to prove the statement (d), suppose that 
C is an ES3 curve with respect to Am. Then, in virtue of  (2.26), we have 

Tt=pUi for some p # 0  

--, (Ta-pUa)B~=O for some p ~ 0  

The above result implies two cases. The first case is that T~ = pU~ for some 
p # 0. This means that C is an ES3 curve with respect to AT,. The second case 
is that the vector T~- pUa is normal to Xm in virtue of  (2.20). That  is, 

x 

T~-pU~=y" C~Na for C~ not all zero (5.16a) 
X 

But, in virtue of (2.25b), the left-hand side of (5.16a) is ( x) 
T~- pU~= T~Bi- p U,.B~ + E UxN~ 

x 

=(Ti- pV,)B o-  p E VxNo 
X 

X 

= - p ~  U~Na (5.16b) 
X 

which shows that the tangent vector T~ is given by (5.10) in this case. Hence 
the statement (d) is proved. The proof  of  the statement (e) is similar to that 
of  statement (d). 

Remark 5.8. As noted in the paragraph following Definition 4.9, if a 
curve C on Xm is ES3 with respect to X~, it is also ESz with respect to X,.  
Hence, it is both ES3 and ES2 with respect to Xm according to the statement 
(a) of  Theorem (5.7). However, a curve C on Xm which is ES3 with respect 
to X,, is not ES2 with respect to Xm in general. Probably, this is due to the 
fact that Xm is not an ES manifold in general. 

Theorem 5.9. Let C be a path of  ESX, which lies on an X,, of ESX,. 
Then the following statements hold: 

(a) If  C is a geodesic with respect to ESX,, it is an ES1 or ES2 curve 
with respect to both Xm and ESX,. 
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(b) If  C is an ES1 curve with respect to Xm and satisfies the condition 
(5.9), it is a geodesic with respect to ESX,. 

(c) If  C is an ES2 curve with respect to Xm, it is a geodesic with respect 
to ESX~. 

Proof First, we note that C is also a path with respect to Xm in virtue 
of Theorem 5.5(a). If  a path C is a geodesic with respect to ESX,, it is an 
ESI o r  ES2 curve with respect to ESXn in virtue of Theorem 4.10(a). Hence, 
the statement (a) immediately follows from Theorem 5.7(a). The statements 
(b) and (c) are direct consequences of Theorem 5.7(b)~ (c) and Theorem 
4.10(b). 
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